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ABSTRACT

It is shown that the maximm-likelihood (ML) detector for noisy,
binary channel with nestricﬁed intersymbol interference (ISI) consists
of & matched filter followed by a tapped delay line. The useful output
is a nonlinear function of the tap outputs. Bounds on the per-syﬁbol
Dprobability of error indicate that a gross approximation to the ML
detector performs as well as an optimm linear detector. The major
assumptions are (1) bi-polar binary signals, (2) ISI only between
adjacent bauds, (3) stationary additive white, Gaussian noise, and
(%) perfect synchronization. Extensions are suggested to remove ‘
assumptions (1) and (2) and to handle stationary, non-white Gaussian

noise.
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1. Introduction

In a previous reportl it was shown that the maximm-1ikelihood (ML)
detector for a noisy, binary channel with memory could be implemented
using two matched filters, one delay element and a recorder-play-back.
system. In this report we will modify and streamline the detector
structure so that it includes only one matched filter and so that
decisions can be made sequentially, in real time. We find new upper
and lower bounds for the detector's performance by certain limiting
Vtechniqueso We also discuss some extensions to the earlier work.

There are four key assumptions for the main body of this report:

(1) The signal is
®
}: Hye e(t-kT),

n=-00

where py = +l or -1, represents the k'R gymbol to
be transmitted. The . 's are independent and s(t)
is known exactly. Thus we focus our attention on
the binary detection of a known signal.. In Section
5 we discuss briefly the multi-level case. If s(t)
is not kmown exactly, then we assume that it can be
sultably measured during a brief calibration run or
can be determined, adaptively, during transmission.
(2) The signal.s(t) is smeared only into one adjacent
baud. Thus £(t) lasts only from O to 2T, This

restriction 1s slso examined in Section 5.




(3) The noise is white, additive and Gaussian.
Colored noise can be handled by suitable pre-
whiten:l.ng2 prior to detection. In that case
s(t) would be the output of the pre-whitening
filter and would be subject to restriction
(2) on page 1.

(4) Synchronism 1s maintained between transmitter
and receiver. This may be achieved, for example,
by the transmission of recurrent synch pulses.

The ML detector discussed in this report i1s new in two respects.
First of all, although it has the general appearance of the linear,
tapped-delay line detectors offered by Iucky3 and by othersu’s s 1t
has been developed without the constraint of linearity. Thus the ML.
detector will always yleld a probability of error that is smaller than
the corresponding linear detector (except in some limiting cases where
the performsnces will be identical). In this sense the ML detector is
mathematically equivalent to that derived in the earlier repc‘o:t"c:L » the
implementation is different and is, in fact, inspired by the linear
detectors of Iucky3 and Tufts.”

Finally, the new detector structure suggests a plece-wise linear
approximation to the optimum detector, which is quite simple to implement.
The approximation is an extension to the class of "feedback taill cancel-
lation" schemes discussed by Tufts and others (see Tufts’ and the
"switched mode" detector of Aein and Hanc0ck6). Because of its simplicity

and near optimum performance; it merits consideration in an actual binary

transmission system.



2. ‘The Detector Specificgtion and Structure

where

In [1] we show that the ML detector first computes

(k+2)T
By = ﬁ“; | y(t) s(t-xT) at,
KT

y(t) is the received signal,

D
y(t) -2 ue s(t-kT) + n(t),
" kmw=00

and n(t) is the additive, white, Gaussian noise of double-sided power

spectral density No/a watts per cps. Ax represents the correlastion of

the signal (+)s(t-kT) with the received signal and can be implemented

with

e matched filter or with a multiplier and integrator.

The detector then bases its decision about the polarity of my, on

the statisticA, 1,

where

Ax = A +2{7_, + Z{Ak-a + ...1}

+ Z{ly .y + Z{A o + 001},

X R
Z{x] = loge .e__i__e;_.ﬁ
1 + &Xh

2T
R sv-lé‘; j:s(t) s(t+1) at.
[

(1)

(2)

(3)

()

(5)



For example, 1f the source proba;bilities are equal and the costs assoclated

with each type of error are equal, then the detector decid.és

1 £ Ax>0
By = ' :
-1 if A, <0.

Note that we may express R as

R= 2o - (6)
where p, defined as
ﬂ. .
Jse(t) at
P B ————— (7)
N, ?
z

is the signal-to-noise ratio and r, defined as

-4 .
Js(t) s(t4T) at

r = » (8)
' - 27

f g2(t) dat

(o)

will be called the index of interference and 1s a measure of the harmful

effects of intersymbol interference. Now r is loosely bounded by
-l<r<l

80 Wwe expect that in the face of severe interference R wlll have values

of the same order of ma_gnitude as pe



Equations (2) and (3) define the ‘ML detector and the corresponding
structure is shown in Fig. 1. Note the similarity between this structure
and those of Lucky3 and of Tufts, that is, a matched filter followed by
a tapped delay line. In this structure, however, the useful output is
mot merely a welghted sum of the tap ocutputs. Here each output is added
to its neighbor after that neighbor is passed through a non-linear amplifier
<the box lsbelled Z and defined by Equation (h)). The M taps to the left
of the center tap, the useful output, indicate that M bauds of the past
deta have been optimally processed to aid in the decision on py. The N
taps to the right indicate that N future bauds have also been considered.

In theory one should let M - o and N — o 1o achieve the optimum detector
structure. We can, in fact, achleve M — o, that is, we can consider all
past data, by a modification of Fig. 1. This modification is shown in
Fig. 2. Obviously, a consideration of all future data required infinite
delay (for an infinite binary sequence) so a finite N must be chosen based
on a study of cost per additional sectlon versus improved performance per
additional section (assuming the associated increased delay 1s acceptable ).
Such a study is very difficult analytically and 1s probably best done
experimentally.

One cf the interesting features of the detector structure of Fig. 2
is that all the non-linear amplifiers, the Z boxes, are identical. Therefore,
knowing the signal shape s(t) (so that the matched filter can be cons;bructed) s
the detector structure is determined by a specification of the parameter R
as given by (5) or (6), since the amplifier characteristics depend only on
Re In Fig. 3 we show the Z-box amplifier input-output characteristics for
several typical values of R. Note that these curves are fairly well behaved

and saturate at *R.
-5-
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Fig. 1 The ML Receiver
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Fig. 2 A Simplified ML Recelver



z{x}, output

Fig. 3 The Non-Linear Amplifier, Z{x}



To provide insight lnto the detector operation let us assume that

the detector of Fig. 2 uses no tapped delay line at all. Hence

Ac = A+ Z{A L + Z{A 5 + <00 )

We see that the kth gecision statistic contalng first of all the correla-
tion of s(t-kT) with the received signal, namely Ay. The other additive
term 1s bounded by *R. In fact, assuming high SNR, Ay.; will be either
lgrge positive for Beag = 1 or large negative for By = =l. Thus
referring to Fig. 3, we will subtract R from Ay 1T py_, 1is positive and
we wlll add R to Ak if ] is negative. This addition or subtraction
of R is mathematically equivalent to subtracting out the channel memory
and 1s, therefore, a “feedback tall cancellation" scheme as mentioned in
the introduction. The novelty here is that the taill cancellation occurs
on a probabllistic basis. That is, we do not simply allow R or -R but
we choose an intermediate value based on Ay _; + Z{A_, + +<.}, which is
8 measure of our certainty concerning W ;. o

To examine the effect of the future data on the detector, we may
consider that the data has been received with time reversed. Thus the
"tail" of the original pulse becomes the main body of the new pulse and
vice-versa. We can perform a similar, probabilistic tail cancellation.
One then combines the information concerning past and future in the

center tap to obtaln the ML shabisbice

3+ Plece=Wise Iinesr Approximgbtlons

Two,‘ successively better sprroximetions to the ML detector are considered.
Beth are really approximations on the function z{x} so that the block diagram
specification of Fig. 2 is still appliceble.

=9u



The first approximetion is Z'{x},

z'{x} = -R Sgn{x})

where

1, x>0
Sen{x} =
—l, X<Qc

If one considers only past data, then the resulting detector is exactly
a tall cancellation scheme as previously discussed. Consideration of
future data, as is done in Fig. 2, represents an improvement over
previous detectors of this type. The performance of this detector,
with a slight modification, is considered in the next section and
serves as the upper bound on the ML detector.

A good approximation Z"{x} to Z{x} 1s shown in Fig. 4. In that
figure the attenuator, A, is glven by

| /2]
i elB- o—R/3
oIR/2 _ /

This choice of A, together with the subsequent plece-wise linpear amplifier
Zy yiélds an approximation that is exact for very small and for véry large
values of x and slso for those x for which Z{x} = tR/2. This second |
approximation is especially good for large R(ﬁ > 16) as ca.ﬁ be seen from

F:I.é» 5‘where % Z{x} is plotted versus %‘ for several values of R.

=10

(9)

(10)



y= z(y) = 2"{x}

IRl R
L 4;(1")
|
! |
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/ |
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Fig. 4 Second Approximation to Z{x]}
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First Approximation e e e
Second Approximation esssssmws

Actual Curves . —

Fig. 5 Comparison of Approximations to Z{x}



4, Performance

me non-linearity of the ML decision statisticA,, as given by (3),
discourages an exact analytical determination of the per-symbol pro'bé.bility
of errof Pee We wlll be content, therefore, to find upper and lower
bounds for Pgs

A reasonable lower bound 1s easlly established. If we want to plot
Pe versus p, the signal-to-noise ratio, then we must choose r, the index
of interference, as a parameter. Obviously, the most favorable condition
18 r = O which means that the main portion of the pulse s(t) is orthogonal
to its tall. If such is the case, proper filtering cen extract this tail
and the particular time slot occupled by the tail is unimportant. We msy
conslder that it is, in fact, sent during the same time slot as the main
body of the pulse. Thus the total signal energy is available in one baud
and we have the usual, interference-less probability of error given by
Erfc{/p}, where

w t2
l -
Exfe{x} aJ—; xfe 2 at. (11)
Our lower bound on Pg is, then,
Exfe{/B} < Pe. (12)

To establish the upper bound on Py, we establish the probability of
error for a sub-optimm debector.. To this end we separate Ax of Equation
(1) into

Ay = cp + 4y » (13)



where (k1)T

cx ® ﬁ%e[ y(t) s(t-kT) at (1%)
and
(k42)T .
dy = ﬁ'-*; f y(t) s(t-xT) at. (15)
(k+1)T

Thus ¢y 1s the correlation of the data with the first part of the pulse,
s(t), and d; is the correlation of the date with the pulse's tall. With

these definitions we can write the optimm statisticA, of Equation (3) as
Ay = o + Z{cyy + dgay + Z{egp + Qe + o0}
+ Qg+ B{8y g + Oy + B{dp s + oo + e l)e
Now we use the first approximation Z'{x} to Z{x} as given by Equation
(9) to yleld a new statistic
cx - R Sen{ey.; + dp.; -R Sgn{...}]
+dy - RSgn{dy .y + ¢ - R Sen{...}}.

The statistic to be studied, Uy, is then found by setting to zero all 4

terms under fhe first Sgn bracket and all ¢ terms under the second. Thus

Uk = U]; + U; Py (16)
where - -

Ug = ¢ - R Sen{Uy] ()
and

Ui = & - R Sen{l,; ) (28)

~1L-




Note that Ul-: 1s & "tall cancellation" detector® operating only on the
data up to (k+1)T and U’]'S' is 1ts counterpart operating only on data
after (lk+1)T.

It can be shown™™ that if Uy is used as a decision statistic for

t 1t ylelds a probability of error Pg given by

I

e ™ ’
g« 1 C+2R 1 c-2R
1l + Exrfe ¥ le = BExfed &= Y- = Erfod 2=
{\/g } 2 { vac § 2 {\J’éc -

where
(o)

7
c= Ni*- fsg(t) dt.
‘ o

Thus, we deduce that Uy ylelds a probsbility of error

D
pt i E«}

e ™ . A . ?
"M, 1 D+2R) . 1 D-2R
1+ Erfc{\/-;-} zErfc{ fZD"} 5 Erfc{ JE’D—'

where

o
D= fs'2(t) at.
¥ J
o

*U) 1s exactly the switched mode detector of Reference (6).

**R. A. Gonsalves, unpublished notes for Course 3.906, Northeastern
University, 1966; this may also be deduced from Reference (6).

(19)

(20)

(21)

(22)



With these definitions of C and D we can write Uy more explicitly as

U, - e (C+D) + ny + R(ky 3 + iy,) - R{Sen U, _;} - R{sen U;_'_l} , (23)
vhere (k42)T |
oy = 1'?; n(t) s(t-m) dte. (24)

The desired probsbility of error Pi™ is

+-
P = p(y, < Olp.k = 1)

or Bi" =L [P+ B+ Py +By), (25)

where P) = P(Uy < OI”’k-l =1, =1, b 4 =1), (26)
P2 = P(P'k < OI‘llk_l =1, By = 1, Mgyl = -l),

etc. We can evaluate these 4 probabilities, as the followlng evaluation
of Py indicates.

From (23) and (26)

P, = P(C + D + ny + 2R - R Sen{Up_;} - R Sen{Uy,;} < °|"k-1 =1, =1, e = 1)

(27)

But ny is independent of both Uy.; end Uy, since, fram (24), ny depends
on the white noise from kT to (k+2)T while Uy_; considers data prior to
KT and UL, considers data after (k+2)T. Also, Up_ end U}, conditioned
on Hy.] = 1, g = 1, and My, = 1, are aiso independent. Thus P; expands

into



P = P(ng < - C - D) B(U-1 > 0|y = 1) P(UL,y > Oty = 1)
+ P(og < - € = D - 4R) P(Uk1 < Oy = 1) P(UE, < Ofiyyy = 1)
+ P(og < - C =~ D - 2R) P(Ug_; < Olp.k_i = 1) P(Ui1 > 0|ty = 1)
+ Plag < - C =D - 2R) P(Ug.y > 0wy = 1) P(U,; < Ofiyyy = 1)

= Q Erfc{\]_c-g——]-)-}+ pt B Erfc{‘%"(:—z—')*-_;}}
+ (L + ¢t B) Erfc{ J%'%’)‘?R}’

where

Q'gal-P"',

e

Q;=1-P;,

since, from (24) ny is Gamssian with mean zero and variance 2(C+D), and

since P(Uk-1 > O|pg.1 = 1) 15 exactly @ = 1 - P, , etc.

In a similer fashion we can establish Py P3 and Py. The resulting

e = (Qq" + PP Erfc{ ’ %P.}
+ 2 (P + Q) Er:f‘c-{ c+1>+ax} { C+D- ER}]
2 C+D J2(CD)
1 (o=pt C+DHIR C+D-4R
+ L (P P ) Erfc{ m}-ﬁ Erfc{ m]o

o
Pe is

~17~-

(28)



This is our upper bound on P for the ML detector. Thus

Erfe{p} < P, < B}~ . (29)

In the derivation of the upper bound we were required to separate
the main portion of the pulse from its tail. Thus, in order to plof.
P, Vs. p, we need a new parameter which defines the division of energy.
Let ' er

[ s2(t) at
' (30)

be the required parsmeter. Then Figures 6, 7, 8, and 9 for a = .25, .50,
+T75 and 1.0 show this upper bound, Equation (28), versus p for several
velues of r.

Since Schwartz's inequality requires

T T

2 Py
[Js(t) s(t+T) dt] ste(t) dtﬁ2(m) at

we have the following inequality for C, D, and R

RQSCDO

This implies the inequality

|rts‘5— (31)

lia

and accounts for the choices of the parsmeter r in Figures 6, 7, 8, and 9.
Finally, since Py~ is symmetric in R and since C and D can be interchanged,
Figures 6 through 9 epply also for a = 4, 2, 1.33 and 1 respectively, and

for r or -r, as indicated.

-18-
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To compare the performence of the ML detector with others we assume
the unit energy pulse s(t) as shown in Fig. 10. Since s(t) is symmetric
gbout t = Ty we have a = 1. Then the output, of the matched filter of
Fig. 2 would be g(t) as shown, if s(t) alone were sent. This is, of
course, the autocorrelation function ¢sls('b) of s(t) delayed by 2T seconds
80 the index of ;Lnte‘rference}r is | '

2T

[s(t) s(t4T) at
= : _ &)
T

oT)
J-se(t) at &

r

= 0250

From the inequality (31) this is about one-half the maximum interference
that can occur. In Fig. 11 we show the resulting upper and lower bounds
on P, for the ML detector. Also shown in this figure is the tail
cancellgtion detector which operates only on the pa.st data, with probability
of error given by Equation (19).

In Reference {[}], Fig. 5, Tufts and Aaron present a similar curve
for the probgbility of error of an optimlzed linear detector. That
curve 1s drawn for a symmetric pulse s(t), implying a = 1, and for
r = 0.2, It 1is reproduced in Fig. 11 for comparison; We can see that
thé upper bound on Pe and this new curve nearly coincide. Since. the
upper bound 1s established by éonsidering & detector which uses the
tall cancellation princ_iple for both past and futu:se data, this indicates

that such a detector is nearly equivalent to an optimm linear detector.



s(t)

g(t)
0 T 20 3T hp

Fig. 10 Input Pulse and the Matched Filter Output

Finally, as discussed in the introduction, the ML detector will
always yield a P. smaller than that of a linear detector since the
ML detector is not restricted by a constraint on linearity. Therefore,
the "linear detector" curve of Fig. 1l sctually serves as another

upper bound on P..

5. Extensions

Conslder the multi-level case where pj can take on one of M
distinct values, 815 8pjeee,aye Then using a; as a reference, the
ML detector computes

A P, = & |all data)

y 1=1,2,.0.,M,
P(uy = & |all data)

. ).



101 1
Tall Cancellation
ML Upper Bound
(r = .25)
1072 §
Pe
20737
1074 1
107
0.1 1.0 io 0 100

Fig. 11 Compaiison of the ML, Tail Cancellation and Linear Receivers
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and chooses that aj which ylelds the‘largest/\.ki. We can show that/\ki

is given by
Ay = (ag o) S4B (A, Bppene) + BylBgys Agoseee)s

where Ay is the same A, as that of Equation (1) and the B; functions ave
similar to the previously encountered Z function, Equation {4). It
appeaz;s that one.could find an upper bound on the performance of this
detector by a dlrect extension of the approa;:h used in the binary case.
A search for efficlent implementation pf tl.lis detector and the actual
bounding of the Pe are recommended for further study.

The major limitation of the approach teken in this report is the
assumption that intersymbol interference exists only between adjacent
symbols. It is apperent that this restriction is met if the suto-
correlation function f. (7) of s(t) is zero for v = 2T, *3T,... .

If such 1s the case, the signal can sctually last for more than two
bauds. The time function of Fig. 12 is an example of such an acceptable
s(t). In fact, we may interpret the restriction to mean that the auto-
correlation function ie non-zero onlyat T =0 and at T = tK_T s Kan
integer. Such might be the case when the interference is due to multi-
path, but only two paths are important. See Fig. 13. In implementing
such a receiver the delay line tap spacings are simply changed from T
seéonds to KT seconds.

Finally we recommend for further study the form of the ML detector
when t.hé autocorrelation fuﬁction is non zero at more than ome intleger

miltiple removed from T = O. From the extenslion gbove; we hypothesize

T



s(t)

y

Fig. 12 Acceptable s(t)

2T
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Fig. 13 Another Acceptable s(t)
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that a good approximstion to this detector, for interference between three

symbols, will take the form of Fig. 14, where

H x Rﬂ. N
Z{x} = ‘J’_ :e;mi ; (32)
and e
s t) s(t+iT) dt. | (33)
Ry T -0‘[8( s(t+

This detector structure is specified by 'three parameters, Rl’ 32 and Rs,
and using the approximation Z}{x} = -R; Sgn{x} might be easily implemented
and analyzed. In that figure

Ak“‘A‘k"'Bl;-l"'B;q-l
vhere By = Ay + Zy(Bg.1} + Zo{Bg.p +] .o
and BE = Ay + Z]_{BL.]_] + ZQ{B;_,Q} H oeee o

6. Conclusions

Implementation of the ML detector when intersymbol interference exists
only between adjacent symbols is fairly simple. The detector comsists of
a filter matched to the signal pulse s(t) followed by a tapped delay line
and a feedback loop (Fig. 2). The detector strucutre, excluding the
matched filter, 1s dependent on‘ a single parameter R, given by R = 2pr,
vhere p is the signal-to-noise ratio, Equation (7), and r is the index
of interference, Equation (8). Thus the optimum ietectior structure can

easily be adapted to a changing signal-to-noise ratio.



UOTSTOod

€ » S p| DTOUSAIUL | e
7 / Z POXTA 190
Fw AR
' NQLE Wit
e a)
Z L 104
. { ._”.N .II|\.,
% 19 7 4
€
HN. 7 ¢
- Iy Iltmw
A
Sy ty v w A
sup] AT
(3)8 03
————

PoyuoYeN I93THL

(1)

Fiz. 14 Posslble Detector soafigurstion ror Extended ISL



The performance of the ML detector can be adequately bounded. . These
bounds are preserited in Fgures 6 through 9. A gross approp:imb.tion to
the ML detector, that which approximates Z{x}.the non-linear amplifier

- of Equation (4), by a saturating amplifier, as indicated in Equation (9),

appears to perform as well as an optimum linear detector and may be easier
to implement.

We indicate that these results can be extended to the multi-level
case and suggest an approximation to the ML detector for significant

interference between more than one symbol.
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